Molar Mass Practice

Find out what one mole of each of the following compounds weighs

1. NaBr

Na: 1x___=

Br: 1x__=_+

____g/mol

2. PbSO₄

Pb: 1x___=

S:1x__=_

O:4x = +

____g/mol

3. Ca(OH)₂

Ca: 1x___=

O : 2x___=___

H: 2x = +

____g/mol

4. Na₃PO₄

Na: ____ = ____

P:___x_=

0 : <u>x</u> = +

____g/mol

To get molar mass:

- 1. List the elements
- 2. Count the elements
- 3. Multiply by mass number
- 4. Add the masses

Example: H₂O

H: 2 x 1= 2

O:1 x16=16

Mass: 16+2= 18g/mol

- 5. (NH₄)₂CO₃
 - N: _____=__
 - H :____=___
 - C :___x__=___
 - O : ____+

____g/mol

No help for the last five!! I've left room for work at the bottom.

- 6. C₆H₁₂O₆
- 7. Fe₃(PO₄)₂
- 8. (NH₄)₂S
- 9. $Zn(C_2H_3O_2)_2$
- 10. AgF

Gram/ Mole Conversions

Part One: Convert moles to grams

1. 5 mol Na₂SO₄

Na: ____x__=__

S :___x__=__

O :___+

g/mol

5 mol x _____g/mol = ____g

2. 3 mol NaNO₃

Na: ____x__=__

N :___x__=__

O :___+

____g/mol

3 mol x ____g/mol = ____g

To convert moles to grams

- Get the molar mass of the compound
- Multiply the number of moles you have been given by the molar mass

Example: Convert 12 moles of H_2O to grams.

H: 2x 1= 2

O: 1x16=16

Mass is 18g/mol

12 mol x 18g/mol = 216 g

Complete the next three without help

- 3. 7.5 mol (Hg₂)₃(PO₃)₂
- 4. 2 mol MgSO₄
- 5. 4 mol KBrO₃

Part Two: Convert grams to moles

6. 4g CuSO₄
Cu: ____x = ___

S :___x__=__

O :___x__=__+

____g/mol

4g ÷ ____g/mol = ____g

7. 43g NaCl

Na: ____x__=__

Cl : x = +

____g/mol

 $43g \div g/mol = g$

Complete the next three without help

- 8. 10g HBr
- 9. 3 g Cr(NO₃)₃
- 10. 15 g Mg₃N₂

To convert grams to moles

- 1. Get the molar mass of the compound
- 2. **Divide** the number of **grams** you have been given by the **molar mass**

Example: Convert 10 g of H_2O to grams.

H: 2x 1= 2

O: 1x16=16

Mass is 18g/mol

10g ÷ 18g/mol = 0.56 moles

Think: Do I have more than one mole, or less than one mole? Does my answer make sense?

Percent Composition by Mass

Find the percent composition by mass for each of the following compounds

1. CaS

___g/mol

2. Srl₂

g/mol

3. Li₃N

___g/mol

4. Ca₃(C₆H₅O₇)₂

To get percent composition:

- 1. Find the molar mass of the compound
- 2. Divide each elements part of the mass by the whole thing
- 3. Multiply each number by 100

Example: Get the percent composition by mass for each element in H_2O

O: 1x16=16 ÷ 18 x 100= 88.89%

5. (NH₄)₃N

____g/mol

Now do the last 5 without help

- 6. B(CH₃COO)₃
- 7. Al₂O₃
- 8. Na₃PO₄
- 9. NO₂
- 10. N₂O₂

Empirical Formulas

Calculate the *empirical formula* for each of the following percent compositions

1. 24.7% calcium, 1.2% hydrogen, 14.8% carbon, and 59.3% oxygen

Ca: 24.7g ÷___= ÷ ___=

H: 1.2g ÷ ____ = ___ ÷ ___ = ___

C: 14.8g ÷ ____ = ___ ÷ ___ = ___

O: 59.3g ÷ ____ = ___ ÷ ___ = ___

Ca H C O

2. 21.2% nitrogen, 6.06% hydrogen, 24.3% sulfur, and 48.45% oxygen

N: 21.2g ÷___= ÷ ___=

H: 6.06g ÷ ____ = ___ ÷ ___ = ___

S: 24.3g ÷ ____ = ___ ÷ ___ = ___

O: 48.45g ÷ ____ = ___ ÷ ___ = ___

N_ H_ S_ O__

3. 44.82% potassium, 18.39% sulfur, 36.79% oxygen

K: 44.82g ÷____= ___ ÷ ____ = ___

S: 18.39g ÷ ____ = ___ ÷ ___ = ___

O: 36.79g ÷ ____ = ___ ÷ ___ = ___

K_ S_ O__

To get an empirical formula:

- 1. Pretend the % is really g.
- 2. Convert the grams to moles
- Divide each of the moles by the smallest one. Round to a whole number only if very close.
- 4. Use the new numbers as subscripts

Example: Get the empirical formula for a compound that is 11.11% hydrogen and 88.89% oxygen.

H: $11.11g \div 1 = 11.11 \text{ mol} \div 5.56 = 2$

O: $88.89g \div 16 = 5.56 \text{ mol} \div 5.56 = 1$

The formula is H₂O

4. 52.0% zinc, 9.6% carbon, 38.4% oxygen

5. 92.2% carbon, 7.76% hydrogen

Now, try three more without any help:

- 6. 11.775g tin and 3.180 g oxygen (already in grams, just set up the problem like normal)
- 7. 21.6% sodium, 33.3% chlorine, 45.1% oxygen
- 8. 19.3% sodium, 26.9% sulfur, 53.8% oxygen

Molecular Formulas

Calculate the molecular formula from the information given in the problems below

1. An unknown compound has an empirical formula of P_2O_5 and a molecular mass of 284g. What is the molecular formula for this compound?

P:___x__=__

O: ____+

g/mol

____g/mol ÷ ____g/mol = ____

 $P_{2 \times} _{O_{5 \times}} = P_{O_{-}}$

2. A compound has an empirical formula of C₂OH₄ and a molecular mass of 88g/mol. What is the molecular formula of this compound?

C: ____ x ___ = ____

H:____ = ____

O: ____+

____g/mol

____g/mol ÷ ____g/mol = ____

 $C_{2 \times} O_{4 \times} H_{4 \times} = C O H$

To get a molecular formula, you will need:

- The *empirical formula* of the molecule in question
- The *molecular mass* of the molecule in question
- 1. Get the molar mass of the empirical formula.
- 2. Divide the *molecular mass* by the mass of the empirical formula
- 3. Multiply the subscripts of the empirical formula by the number you got in #2

Example: A molecule has an empirical formula of H₂O and a molecular mass of 72 g/mol. What is its molecular formula?

H: 2x1=2

O: 1x16=16

Mass is 18 g/mol

 $72g/mol \div 18g/mol = 4$

 $H_{2\times4} O_{1\times4} = H_8 O_4$

Do the remaining problems without help

- 3. A compound has an empirical formula of C_4H_4O and a molecular mass of 136 g/mol. What is the molecule's molecular formula?
- 4. A compound has an empirical formula of CFBrO and a molecular mass of 255 g/mol. What is the molecule's molecular formula?
- 5. A compound has an empirical formula of C_2H_8N and a molecular mass of 46 g/mol. What is the molecule's molecular formula?

Unit 7 Review

The following problems are a review of what you have learned in unit seven. No help problems or examples are given. Use the unit pages to help you solve these problems.

Part One: Convert moles to grams

- 1. 12 mol PtCl₄
- 2. 5 mol C₂H₄O₂

Part Two: Convert grams to moles

- 3. 3 g C₅H₁₂O₂
- 4. 8g NH₃

Part Three: Give the percent composition for each element in the following compounds

- 5. NaOH
- 6. PbSO₄
- 7. FeBr₃
- 8. Fe(OH)₃

Part Four: Find the empirical for compounds with the following percent compositions

- 9. 10.04% carbon, 0.84% hydrogen, 89.12% chlorine
- 10. 30.43% nitrogen and 69.57% oxygen
- 11. 82.40% nitrogen and 17.60% hydrogen
- 12. 88.8% copper and 11.2% oxygen

More on back

Part Five: Find the molecular formula for the following compounds

- 13. Empirical formula is CH₂, molecular mass is 28 g/mol
- 14. Empirical formula is C₂HCl, molecular mass is 179 g/mol
- 15. Empirical formula is C_3H_2O , molecular mass is 216 g/mol