Waves

Section 1 The Nature of Waves

A. Wave—a repeating disturbance or movement that transfers	_through matter or space
1. Molecules pass energy on to molecules.	
2. Waves carry energy without transporting	•
3. All waves are produced by something that	
4. Medium—a through which a wave travels.	
a. May be solid, liquid, or	
b. Not all waves need a medium to travel through; example:	
B. Mechanical waves—waves that can travel only through	
1. Transverse waves—matter in the medium moves back and forth	
the direction that the wave travels; example:	
2. Compressional waves—matter in the medium moves	that
the wave travels; example:	
3. Combinations—not purely transverse or compressional; examples	s: water waves,
waves	
Section 2 Wave Properties	
A. Ways waves differ	
1. How much they carry	
2. How they travel	
3. How they look	1 1 1t mainta
a waves have crests—the highest points, and tr	oughs—the lowest points.
b. Compressional waves have dense regions called	and less dense
regions called·	
B. Wavelength—the distance between one point in the wave and	

Note-taking Worksheet (continued)

C. Frequency—how many pass a fixed point each second	
1. Expressed in	
2. As frequency increases, wavelength	
3. The frequency of a wave equals the rate of of the source that c	reates it.
D. Wave, or ν, describes how fast the wave moves forward.	
1 = wavelength \times , or $v = \lambda \times f$.	
2. Light waves travel than sound waves.	
3. Sound waves travel faster in and than in gas.	
4. Light waves travel faster in and than in liquids	and solids.
E. Amplitude—a measure of the in a wave	
1. The more energy a wave carries, the its amplitude.	
2. Amplitude of waves is related to how tightly the medium together at the compression.	
a. The the compressions, the larger the amplitude is and the mow wave carries.	
b. The less dense the rarefactions, the the amplitude and the mo wave carries.	re energy the
3. Amplitude of waves	
a. The distance from the crest or trough of a wave to the medium	of the
b. Example: how high an ocean wave appears above the water level	
Section 3 The Behavior of Waves	
A. Reflection occurs when a wave strikes an object and of it.	
1 types of waves can be reflected.	
2. The angle of incidence of a wave is always equal to the angle of	•
a. Normal—an imaginary line to a reflective surface	
b. Angle of—the angle formed by the wave striking the surf	ace and the
c. Angle of the angle formed by the reflected wave and the	he normal

В.	Refraction —the of a wave caused by a change in its speed as it moves from one medium to another
	1. The greater the change in speed is, the the wave bends.
,	2. When a wave passes into a material that slows it down, the wave is bent the normal.
	3. When a wave passes into a material that speeds it up, the wave is bent the normal.
C.	. Diffraction—an object causes a wave to change direction and around it
	1. If the obstacle is than the wavelength, the wave diffracts a lot.
	2. If the obstacle is much than the wavelength, the wave does not diffract much.
	3. The larger the obstacle is compared to the wavelength, the the waves will diffract.
D	. Interference—the ability of two or more waves to and form a new wave
	1. Waves pass right through each other and continue in
	2. New wave exists only while the two original waves continue to
	3. Constructive interference—waves together
	4. Destructive interference—waves from each other
E.	. Standing waves—a wave pattern that stays in
	1. Form when waves of equal and amplitude that are traveling in
	directions continuously interfere with each other
	2. Nodes—the places where two waves cancel each other
F.	Resonance—the ability of an object to by absorbing energy at its natural frequency

Date

Electromagnetic Waves

Date

Section 1 What are electromagnetic waves?

A. Electromagnetic waves are made by vil	orating electric charges and can travel through
B. Electric and magnetic fields—related _	that operate even in empty space
1. A electric charge	creates a magnetic field.
2 magnetic field	s create changing electric fields and vice versa.
	hen an electric charge is
Vibrating electric charges are	by vibrating electric and magnetic fields.
2. Vibrating electric and magnetic field	ds travel from the moving charge.
D. Properties of electromagnetic	
1. Frequency and wavelength—as freq	quency, wavelength decreases
Trequency and wavelength as its	per second; measured in hertz.
a. Frequency is the number of	from one crest to another and is measured in
meters.	ce,; electromagnetic waves
slow as they travel through matter.	
	not clear
E. Waves and particles—	whose energy depends on frequency.
	, whose energy depends on frequency.
2. All can behave	ave like a wave
Section 2 The Electromagnetic S	pectrum
A. The entire of electron	omagnetic wave frequencies is called the electromagnetic
spectrum.	
	ncy electromagnetic waves with wavelengths from less
than a centimeter to about 1000 meter	
1. Microwaves—radio wave lengths	
2radio waves be	ounced off an object to determine its speed and location

Note-taking Worksheet (continued)

Copyright @ Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.

(MRI)-radio waves produce an image of the

3.

	inside of the body
C.	Infrared waves—electromagnetic wave with a slightly frequency than radio
	waves; people feel it as thermal energy or warmth
D.	—has wavelengths between about 390 to 770 billionth of a meter;
	can be seen with the eye
E.	—have frequencies slightly higher than visible light; can
	damage skin
	1. Ultraviolet light can kill
	2. Ultraviolet light can be absorbed by some materials and released
	as visible light.
	3layer above Earth's surface absorbs most of the Sun's harmful ultraviolet waves.
F.	and gamma rays—ultra-high-frequency electromagnetic waves that can
	travel through matter, break molecular bonds, and damage cells
	1. X rays are used to provide images of and to examine suitcases at airports
	without opening them.
	2. Radiation therapy is used to diseased cells.
Sc	ection 3 Radio Communication
	Radio
Α.	1. The is the specific frequency of the radio wave to which a radio
	station is assigned. 2. AM radio stations broadcast electronic signals by varying the of the
,	carrier wave; frequencies range from 540 to 1,600 thousand vibrations per second.
	3. FM radio stations transmit electronic signals by varying the of the
	3. FIVI radio stations transmit electronic signals by varying the

carrier wave; frequencies range from 88 million to 108 million vibrations per second.

Date

3.		—sounds and images changed into electronic signals broadcast
	by	carrier waves
	1.	Audio sent by radio waves.
		Video sent by signals.
	3.	A sealed vacuum chamber called a cathode-ray tube has a coated screen that receives
		to provide images.
c.	Tel	lephones—microphone converts into electrical signal
	1.	—electrical signal creates a radio wave that is transmitted to and
		from a microwave tower
	2.	—uses a transceiver to send one radio signal and receive
		another at a different frequency from a base unit
	3.	—a radio receiver on which a message is left
D.		ommunication satellites—high frequency signal is transmitted to a
satellite, which amplifies it and returns it to Earth at a different frequency		tellite, which amplifies it and returns it to Earth at a different frequency
	1.	Satellite telephone systems— phones transmit radio signals to a satellite
		which relays them back to a ground station that passes the call into the telephone network
	2.	Television satellites—uses rather than longer-wavelength radio
		wave; ground receiver dish focuses the microwave beam onto an antenna
E.		system—system of satellites, ground stations, and receivers
	th	at provide information about the receiver's location on or above the Earth's surface

Light

The Behavior of Light Section 1

A.	Lig	tht and matter—objects must light to be seen.
	1.	materials do not allow light to pass through them; they only absorb and reflect light.
	2.	Some light passes through materials.
	3.	materials allow almost all light to pass through them; only a little light is absorbed and reflected.
В.	Re	flection of light—a light wave strikes an object and
	1.	—the angle at which light strikes a surface is the same as the angle at which it is reflected
	2.	reflection—reflection of light waves from a smooth surface
		reflection—reflection of light waves from a rough surface
C.		
		—indicates how much a material reduces the speed of light;
	1.	the more light is slowed, the the index of refraction
	2.	
		Refraction of light through air layers of different densities can result in a(n)
So	ecti	ion 2 Light and Color
		Objects appear to be because they reflect all colors of visible light.
	2.	Objects appear to be because they absorb, rather than reflect, all colors of visible light.
	3.	Filter—transparent material that all colors except the color or colors it transmits
	4	can make objects appear to be different colors.

__waves of same wavelength are aligned, and travel

Note-taking Worksheet (continued)

В.	Seeing color—light enters the eye and is focused on the
	1. Retina—made up of two types of that absorb light
	adistinguish colors and detailed shapes; most effective in daytime vision
	bsensitive to dim light; most effective in nighttime vision
	2 results when one or more sets of cones do not function properly.
c.	Mixing colors
	1colored material that absorbs some colors and reflects others
	2. Primary colors of light—red, green, and
	3. Primary colors ofmagenta, cyan, and
	4. Primary colors of light are colors—combine to form white
	5. Primary colors of pigments are colors—combine to form black, the absence of reflected light
Se	ction 3 Producing Light
A.	lights—hot tungsten wire glows; gives off light and heat
в.	lights—electrons collide with gas atoms, releasing ultraviolet radiation absorbed by phosphors lining the bulb; gives off light
	1. Use energy than incandescent bulbs
	2. Last than incandescent bulbs
C.	lights—tubes filled with gas (usually neon) produce light from electron collisions; different colors can be made by adding different gases
D.	lights—heated neon gas glows and warmth turns sodium into a vapor,
	producing a yellow-orange glow; used for lighting
Е.	lights—have a filament and gas enclosed in a glass bulb to produce intensely bright light
F.	—light beam produced when identical atoms send off identical light waves; can be

made from gases, liquids, or solids

1. Lasers produce _____same direction

A.	—light waves vibrate in only one direction after passing through a
	polarizing filter.
В.	process used to create a three-dimensional photographic image of an object
	1. Illuminating objects with laser light produces
	2. Holographic images are to copy.

- C. When laser light must travel long distances or to hard-to-reach places,
 - ___light strikes a surface between two materials and is completely reflected back to the first material
 - 2. Uses of optical fibers

_____ are used.

- a. ________send enormous numbers of messages in coded light beams
- **b.** _____internally explore the body
- —read intensities of reflected light and convert the information to D. digital signals
 - 1. Used in stores to read price on pattern called _____
 - 2. Used in U.S. Postal Service to ______ and keep track of deliveries
 - 3. Used in office machines such as _____ machines and fax machines