Copyright @ Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.

Chemical Bonds

Stability in Bonding Section 1

A. Some elements combine chemically and no longer have the same	they
did before forming a compound.	
B. A(n) is composed of symbols and subscr	ipts indicating the
number of atoms of an element in a compound.	
C. Atoms form compounds when the compound is more th	nan the separate atoms.
1. Noble gases are more than other eler	nents because they
have a complete outer energy level.	
2. Elements that do not have full outer energy levels are more stable in _	
3. Atoms can lose, gain, or electrons to get a stable out	ter energy level.
4. A(n) is the force that holds atoms together	er in a compound.
Section 2 Types of Bonds	
A. A(n) is a charged particle because it has more or fewer ele	ectrons than protons.
1. When an atom an electron, it becomes a positively of	charged ion; a super-
script indicates the charge.	
2. When an atom an electron, it becomes a negatively	charged ion.
B. An ionic compound is held together by the—the	force of attraction
between opposite charges of the ions.	
1. The result of this bond is a(n) compound.	
2. The sum of the charges on the ions in a unit of the compound is	
C are neutral particles formed as a result of sharing	electrons.
1. A is the force of attraction between atoms	
2. Atoms can form double or triple depending on whe	ther they share two or
three pairs of electrons.	
3. Electrons shared in a molecule are held to t	the atoms with the
larger nucleus.	*

- **4.** A(n) **molecule** has one end that is slightly negative and one end that is slightly positive although the overall molecule is neutral.
- 5. In a(n) _____ molecule, electrons are shared equally.

Writing Formulas and Naming Compounds Section 3

- A. Chemists use _____ from the periodic table to write formulas for compounds. B. _____composed of two elements
 - 1. _____how many electrons an atom has gained, lost, or shared to become stable
 - 2. Use oxidation numbers and their least common multiples to write ______.
 - a. When writing formulas, remember that the compound is ______.
 - b. A formula must have the correct number of positive and negative ions so the charges _____.
 - 3. Use the name of the first element, the root name of the second element, and the suffix -ide to write the ______ of a binary ionic compound.
- C. ______positively or negatively charged, covalently bonded group of atoms
 - 1. The compound contains ______ or more elements.
 - 2. To write names, write the name of the ______ ion first; then write the name of the _____ion.
 - 3. To write ______, use the oxidation numbers, their least common multiple, and put parentheses around the polyatomic ion before adding a subscript.
- D. —compound with water chemically attached to its ions
- E. Name binary covalent compounds by using ______ to indicate how many atoms of each element are in the compound.

Copyright @ Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.

Date

Chemical Changes Section 1

Note-taking Worksheet

A.		escribing
	-	bstances
	1.	are substances that combine or change.
	2.	New substances that are produced are called
B.		—a law which states that, in a chemical reaction, matter is not
	cre	eated or destroyed; it stays the same.
	1.	experimented with mercury (II) oxide and heat
	2.	Found mass of products (liquid mercury and oxygen gas) mass of reactants
	Wi de:	riting equations—a uses chemical formulas and symbols to scribe a chemical reaction and the product(s) it produces.
	1.	Chemical formula expresses the relationship between elements in the compounds and molecules they make up
	2.	—numbers which represent the number of units of each substance in a reaction
	3.	Knowing coefficients of chemical reactions allows chemists to use the
		of reactants to predict the amounts of products.
	4.	Subscripts—numbers which represent the number of in a molecule of a particular element.
	5.	Symbols used to show state of reactants: (s) , (aq) , (g) , $(clear)$
D.		react with atmosphere in different ways.
Se	cti	on 2 Chemical Equations
A.	Ch	ecking forlaw of conservation of mass requirement
	1.	Achemical reaction—both sides of equation have same number of atoms of each element
	2.	Choosing coefficients— becomes easier with practice; trial and error at first

B. ______ balanced chemical equations—a four-step process
 Describe the reaction in _____.
 Write the _____ using formulas and symbols.
 Check for _____.
 Add _____ where needed for balance.

Section 3 Classifying Chemical Reactions

A. _____ reaction—two or more substance form a new substance; A + B → C
B. One substance breaks down into two or more substances in a _____ reaction; AB → A + B
C. _____ reaction—one element replaces another one in a compound; A + BC → AC + B or D + BC → BD + C

D. A ______ reaction results if a precipitate, water, or a gas forms when two ionic compounds in solution are combined; AB + CD → AD + CB

Section 4 Chemical Reactions and Energy

- A. Chemical reactions involve energy ______.1. Breaking chemical bonds ______ energy.
 - 2. _____ chemical bonds releases energy.
- **B.** More energy _____
 - 1. _______energy required to break bonds is less than the energy released from new bonds; energy given off is usually light.
 - 2. _____ reactions—energy given off in the form of heat
- C. More energy _____
 - 1. _____ reactions—more energy is required to break bonds than to form new ones; need energy for the reaction to occur
 - 2. If energy needed is heat, the reaction is ______.
 - 3. A ______ speeds up a chemical reaction without itself being permanently changed.
 - 4. An _____ prevents or slows a chemical reaction or interferes with a catalyst's action.