

Geometry

Activity 3 knoxschools.org/kcsathome

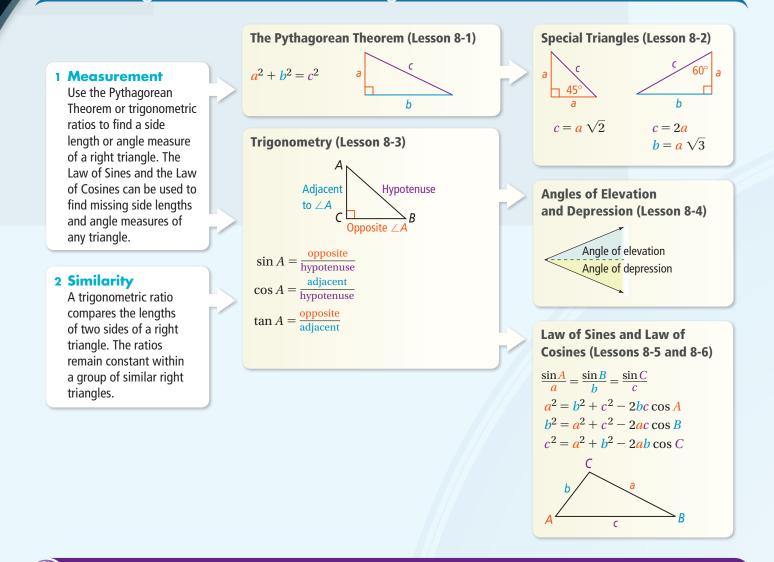
This packet includes four sections that cover the major content of Geometry. Each section includes four pages of notes and practice for each topic. For additional support, visit KCS TV on YouTube for instructional videos that accompany each section.

The following content is included in this packet:

	Section			
	Section I	Section II	Section III	Section IV
	Similarity	Quadrilaterals	Trigonometry	Circles
	Ratios &	The Polygon Angle-	The Pythagorean	Tangent Lines
Problem Set 1	Proportions	Sum Theorems	Theorem and Its	
			Converse	
Problem Set 2	Similar Polygons	Properties of	Special Right	Chords and Arcs
		Parallelograms	Triangles	
	Proving Triangles	Proving That a	Trigonometry and	Inscribed Angles
Problem Set 3	Similar	Quadrilateral is a	Angles of Elevation	
		Parallelogram	& Depression	
Problem Set 4	N/A	Properties of	Law of Sines and	Angle Measures
		Rhombuses,	Cosines	and Segments
		Rectangles, and		
		Squares		

Geometry

SECTION III


Trigonometry

- The Pythagorean Theorem and Its Converse
- Special Right Triangles
- Trigonometry and Angles of Elevation & Depression
- Law of Sines and Cosines

Trigonometry

Connecting **BIG** ideas and Answering the Essential Questions

Chapter Vocabulary

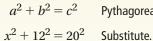
- angle of depression (p. 516)
- angle of elevation (p. 516)
- cosine (p. 507)

- Law of Cosines (p. 526)
- Law of Sines (p. 522)
- Pythagorean triple (p. 492)
- Choose the correct term to complete each sentence.
- 1. ? are equivalent ratios for the corresponding sides of two triangles.
- **2.** A(n) ? is formed by a horizontal line and the line of sight above that line.
- **3.** A set of three nonzero whole numbers that satisfy $a^2 + b^2 = c^2$ form a(n)?.
- **534** Chapter 8 Right Triangles and Trigonometry

- sine (p. 507)
- tangent (p. 507)
- trigonometric ratios (p. 507)

8-1 The Pythagorean Theorem and Its Converse

Quick Review


The **Pythagorean Theorem** holds true for any right triangle.

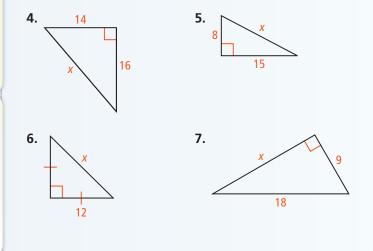
$$(\log_1)^2 + (\log_2)^2 = (hypotenuse)^2$$

 $a^2 + b^2 = c^2$

The Converse of the Pythagorean Theorem states that if $a^2 + b^2 = c^2$, where *c* is the greatest side length of a triangle, then the triangle is a right triangle.

Example

What is the value of *x*?


Pythagorean Theorem

 $x^2 = 256$ Simplify. x = 16 Take the square root.

Exercises

Find the value of *x*. If your answer is not an integer, express it in simplest radical form.

Find the value of each variable. If your answer is not an

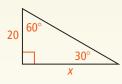
integer, express it in simplest radical form.

8-2 Special Right Triangles

Quick Review

$45^{\circ}-45^{\circ}-90^{\circ}$ Triangle

hypotenuse = $\sqrt{2} \cdot \log$

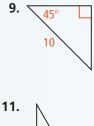

 $30^{\circ}-60^{\circ}-90^{\circ}$ Triangle

hypotenuse = $2 \cdot \text{shorter leg}$ longer leg = $\sqrt{3} \cdot \text{shorter leg}$

Example

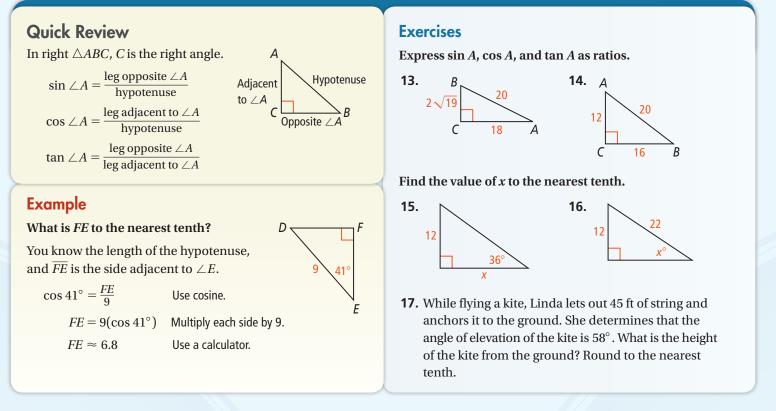
What is the value of *x*?

The triangle is a $30^{\circ} - 60^{\circ} - 90^{\circ}$ triangle, and *x* represents the length of the longer leg.


longer leg = $\sqrt{3}$ • shorter leg

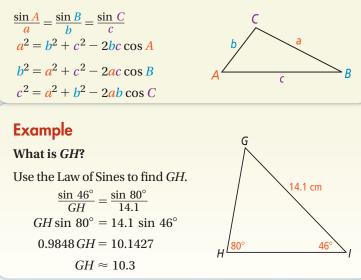
$$x = 20\sqrt{3}$$

10.

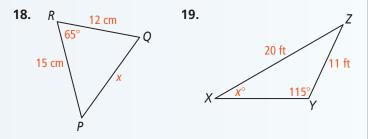

Exercises

8.

- y 14
- **12.** A square garden has sides 50 ft long. You stretch a hose from one corner of the garden to another corner along the garden's diagonal. To the nearest tenth, how long is the hose?


8-3 and 8-4 Trigonometry and Angles of Elevation and Depression

8-5 and 8-6 Law of Sines and Law of Cosines


Quick Review

In $\triangle ABC$, *a*, *b*, and *c* are the lengths of the sides opposite $\angle A$, $\angle B$, and $\angle C$, respectively. The Law of Sines and the Law of Cosines are summarized below.

Exercises

Find the value of *x* to the nearest tenth.

- **20.** In $\triangle DEF$, sides *d*, *e*, and *f* are opposite $\angle D$, $\angle E$, and $\angle F$ respectively. The side lengths are *d* = 25 in., *e* = 18 in., and *f* = 20 in. Find the *m* $\angle D$ to the nearest tenth.
- **21.** In $\triangle LMN$, sides ℓ , *m*, and *n* are opposite $\angle L$, $\angle M$, and $\angle N$ respectively. You know that m = 3 cm, n = 8 cm, and $m \angle L = 72^{\circ}$. Find the $m \angle N$ to the nearest tenth.

Section III - Trigonometry

1. Trigonometric ratios 2. Angle of elevation 3. Pythagorean Triple 4. $x = 2\sqrt{113}$ 5. x = 176. $x = 12\sqrt{2}$ 7. $x = 9\sqrt{3}$ 8. x = 7, y = $7\sqrt{2}$ 9. $x = 5\sqrt{2}$ 10. y = 12, x = $6\sqrt{3}$ 11. x = 7, y = $7\sqrt{3}$ 12. $d \approx 70.7 ft$ 13. $\sin A = \frac{\sqrt{19}}{10}$, $\cos A = \frac{9}{10}$, $\tan A = \frac{\sqrt{19}}{9}$ 14. $\sin A = \frac{4}{5}, \cos A = \frac{3}{5}, \tan A = \frac{4}{3}$ 15. $x \approx 16.5$ 16. $x \approx 33$ 17. $h \approx 38.2 ft$ 18. $x \approx 17.43$ 19. $x \approx 29.898$ 20. $D \approx 82.097$ degrees 21. N≈ 85.69 *degrees*