

Geometry

Activity 1 knoxschools.org/kcsathome This packet includes four sections that cover the major content of Geometry. Each section includes four pages of notes and practice for each topic. For additional support, visit KCS TV on YouTube for instructional videos that accompany each section.

The following content is included in this packet:

	Section			
	Section I	Section II	Section III	Section IV
	Similarity	Quadrilaterals	Trigonometry	Circles
	Ratios &	The Polygon Angle-	The Pythagorean	Tangent Lines
Problem Set 1	Proportions	Sum Theorems	Theorem and Its	
			Converse	
Problem Set 2	Similar Polygons	Properties of	Special Right	Chords and Arcs
		Parallelograms	Triangles	
	Proving Triangles	Proving That a	Trigonometry and	Inscribed Angles
Problem Set 3	Similar	Quadrilateral is a	Angles of Elevation	
		Parallelogram	& Depression	
	N/A	Properties of	Law of Sines and	Angle Measures
Problem Set 4		Rhombuses,	Cosines	and Segments
		Rectangles, and		
		Squares		

Geometry

SECTION I

Similarity

- Ratios & Proportions
- Similar Polygons
- Proving Triangles Similar

Similarity

Connecting **BIG** ideas and Answering the Essential Questions

1 Similarity

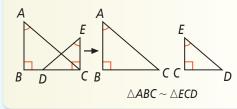
You can set up and solve proportions using corresponding sides of similar polygons.

2 Reasoning and Proof

Two triangles are similar if certain relationships exist between two or three pairs of corresponding parts.

3 Visualization

Sketch and label triangles separately in the same orientation to see how the vertices correspond. **Ratios and Proportions (Lesson 7-1)** The Cross Products Property states that if $\frac{a}{b} = \frac{c}{d}$, then ad = bc.

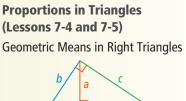

Similar Polygons (Lesson 7-2)

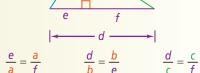
Corresponding angles of similar polygons are congruent, and corresponding sides of similar polygons are proportional.

Proving Triangles Similar (Lesson 7-3)

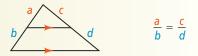
Angle-Angle Similarity (AA \sim) Postulate Side-Angle-Side Similarity (SAS \sim) Theorem Side-Side-Side Similarity (SSS \sim) Theorem

Seeing Similar Triangles (Lessons 7-3 and 7-4)

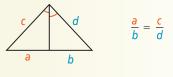



indirect measurement (p. 454)

• means (p. 434)


• ratio (p. 432)

• proportion (p. 434)



Side-Splitter Theorem

Triangle-Angle-Bisector Theorem

Vocabulary

- extended proportion (p. 440)
- extended ratio (p. 433)
- extremes (p. 434)
- geometric mean (p. 462)
- Choose the correct term to complete each sentence.
- **1.** Two polygons are <u>?</u> if their corresponding angles are congruent and corresponding sides are proportional.
- **2.** A(n) ? is a statement that two ratios are equal.
- **3.** The ratio of the lengths of corresponding sides of two similar polygons is the <u>?</u>.
- **4.** The Cross Products Property states that the product of the <u>?</u> is equal to the product of the <u>?</u>.

- scale drawing (p. 443)
- scale factor (p. 440)
- similar figures (p. 440)
- similar polygons (p. 440)

7-1 Ratios and Proportions

Quick Review

A ratio is a comparison of two quantities by division. A proportion is a statement that two ratios are equal. The **Cross Products Property** states that if $\frac{a}{b} = \frac{c}{d}$, where $b \neq 0$ and $d \neq 0$, then ad = bc.

Example

What is the solution of $\frac{x}{r+3} = \frac{4}{6}$? 6x = 4(x + 3) Cross Products Property 6x = 4x + 12 Distributive Property 2x = 12Subtract 4x from each side.

Divide each side by 2. x = 6

Exercises

- 5. A high school has 16 math teachers for 1856 math students. What is the ratio of math teachers to math students?
- 6. The measures of two complementary angles are in the ratio 2 : 3. What is the measure of the smaller angle?

Algebra Solve each proportion.

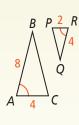
7.
$$\frac{x}{7} = \frac{18}{21}$$

8. $\frac{6}{11} = \frac{15}{2x}$
9. $\frac{x}{3} = \frac{x+4}{5}$
10. $\frac{8}{x+9} = \frac{2}{x-3}$

7-2 and 7-3 Similar Polygons and Proving Triangles Similar

Quick Review

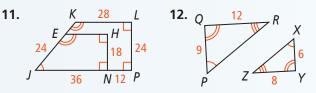
Similar polygons have congruent corresponding angles and proportional corresponding sides. You can prove triangles similar with limited information about congruent corresponding angles and proportional corresponding sides.


Postulate or Theorem	What You Need
Angle-Angle (AA \sim)	two pairs of \cong angles
Side-Angle-Side (SAS \sim)	two pairs of proportional sides and the included angles \cong
Side-Side-Side (SSS \sim)	three pairs of proportional sides

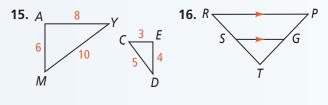
Example

Is $\triangle ABC$ similar to $\triangle RQP$? How do vou know?

You know that $\angle A \cong \angle R$.


 $\frac{AB}{RQ} = \frac{AC}{RP} = \frac{2}{1}$, so the triangles are similar by the SAS \sim Theorem.

sides


Exercises

The polygons are similar. Write a similarity statement and give the scale factor.

- **13. City Planning** The length of a rectangular playground in a scale drawing is 12 in. If the scale is 1 in. = 10 ft, what is the actual length?
- **14. Indirect Measurement** A 3-ft vertical post casts a 24-in. shadow at the same time a pine tree casts a 30-ft shadow. How tall is the pine tree?

Are the triangles similar? How do you know?

Answer Key

Section I - Similarity

- 1. similar
- 2. proportion
- 3. scale factor
- 4. means, extremes (in either order)
- 5. $\frac{16}{1856} = \frac{1}{116}$ or 1:116.
- 6. 36
- 7.6
- 8. $\frac{55}{4}$ or $13\frac{3}{4}$
- 9. 6
- 10. 7
- 11. $JEHN \sim JKLP$; 3:4
- 12. $\Delta PQR \sim \Delta XYZ$; 3:2
- 13. 120 ft
- 14. 45 ft
- 15. The ratio of each corresponding side is 2 : 1, so $\triangle AMY \sim \triangle ECD$ by SSS~.
- 16. If the lines are \parallel , then corresponding angles are \cong . Therefore $\Delta TSG \sim \Delta TRP$ by AA \sim .