

Eighth Grade Math

Activity 2 knoxschools.org/kcsathome This packet includes four sections that cover the major content of 8th grade math. Each section includes four pages of notes and practice for each topic. For additional support, visit KCS TV on YouTube for instructional videos that accompany each section.

	Торіс					
	I. Solving Equations and Systems of Equations	II. The Pythagorean Theorem	III. Proportional Relationships and Functions	IV. Exponents and Scientific Notation		
Activity 1	Equations with the Distributive Property	The Pythagorean Theorem	Representing Proportional Relationships	Integer Exponents		
Activity 2	Solving Systems of Linear Equations by Graphing	Converse of the Pythagorean Theorem	Interpreting the Unit Rate as Slope	Scientific Notation with Positive Powers of 10		
Activity 3	Solving Systems by Substitution	Distance Between Two Points	Writing Linear Equations from a Table	Scientific Notation with Negative Powers of 10		
Activity 4	Solving Systems by Elimination	Distance Between Two Points 2	Identifying and Representing Functions	Operations with Scientific Notation		

The following content is included in this packet:

Name	
------	--

Date Class

Given the squares that are on the legs of a right triangle, draw the square for the hypotenuse below or on another sheet of paper.

Find the missing side.

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.

3. 1, 2, 3	4. 8, 7, 6	5. 15, 20, 25
Hypotenuse:	Hypotenuse:	Hypotenuse:
Show that these sides for	orm a right triangle.	
6. 2, 3, √ 13	7.3,6,3√	/5

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.

Section II Activity 3 Distance Between Two Points

Look at the triangles shown below.

- 1. Are the triangles the same size?
- 2. What formula should you use to find the length of the hypotenuse for the triangle on the left?
- 3. What formula should you use to find the length of the hypotenuse for the triangle on the right?

4. Using the Pythagorean Theorem:

$$a^{2} + b^{2} = c^{2}$$

$$a^{2} + a^{2} = c^{2}$$

$$a^{+} = c^{2}$$

$$a^{-} + a^{-} = c^{2}$$

$$a^{-} = c^{2}$$

$$a^{-} = c^{2}$$

$$a^{-} = c^{2}$$

$$d^{-} = c^{2}$$

6. What do you notice about the last two steps of the formulas above?

Distance Between Two Points Section II Activity 4

Problem 1

How do you know which coordinate is which in the distance formula?

Here are two points: A(1, 2) and B(4, 7).

Step 1 The Distance Formula: $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Step 2 What is " x_1 "? \longrightarrow " x_1 " is the *x*-coordinate of point *A*, the first point.

Step 3 What is " x_2 "? \longrightarrow " x_2 " is the *x*-coordinate of point *B*.

Step 4 What is y_1 in (1, 2)? \longrightarrow $y_1 = "y$ sub one" = 2 **Step 5** What is y_2 in (4, 7)? $\longrightarrow y_2 = "y$ sub two" = 7

Problem 2

Find the distance between the two points using the Distance Formula.

Here's the formula: $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Substitute the numbers from Problem 1: $d = \sqrt{(4-1)^2 + (7-2)^2}$

Simplify: $d = \sqrt{(4-1)^2 + (7-2)^2} = \sqrt{3^2 + 5^2} = \sqrt{9+25} = \sqrt{34}$.

You can leave the answer as a square root, or you can use a calculator to find that the square root of 34 is about 5.8.

Name x_1 , x_2 , y_1 , and y_2 . Then, find the distance between the points.

1.
$$C(6, 4)$$
 and $D(9, 5)$
 $x_{1}: _ ; x_{2}: _ ; y_{1}: _ ; y_{2}: _$
 $d = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}$
2. $X(0, 6)$ and $Y(1, 8)$
 $x_{1}: _ ; x_{2}: _ ; y_{1}: _ ; y_{2}: _$
 $d = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}$
 $d = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}$

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.

Answer Key

II. The Pythagorean Theorem

Activity 1: The Pythagorean Theorem

Drawings may vary, but should be squares of side 10. Sample:
 c = 17
 a = 10cm

1. 10 in 2. 15 mm 3. 3; $1^2 + 2^2 = 5$; $3^2 = 9$; no 4. 8; $6^2 + 7^2 = 85$; $8^2 = 64$; no 5. 25; $15^2 + 20^2 = 625$; $25^2 = 625$; yes 6. $2^2 + 3^2 = 13$; $(\sqrt{13})^2 13 = 13$ 7. $3^2 + 6^2 = 45$; $(3\sqrt{5})^2 35 = 9(5) = 45$

Activity 3: Distance Between Two Points

1. Yes 2. the Pythagorean Theorem 3. the Distance Formula 4. $6^2 + 8^2 = c^2$; $36 + 64 = c^2$; $100 = c^2$; $\sqrt{100} = c$; 10 = c5. $d = \sqrt{(10-2)^2 + (2-8)^2}$ $d = \sqrt{8^2 + 6^2}$ $d = \sqrt{64 + 36}$ $d = \sqrt{100}$ d = 10

6. Answers may vary, but should mention, at a minimum, that both of the last two steps involve finding a square root.

Activity 4: Distance Between Two Points 2

1. 6, 9, 4, 5; d = $\sqrt{10}$ or about 3.2 2. 0, 1, 6, 8; d = $\sqrt{5}$ or about 2.2

- i	 		 	
- h	 		 	