

Eighth Grade Math

Activity 1 knoxschools.org/kcsathome This packet includes four sections that cover the major content of 8th grade math. Each section includes four pages of notes and practice for each topic. For additional support, visit KCS TV on YouTube for instructional videos that accompany each section.

	Торіс						
	I. Solving Equations and Systems of Equations	II. The Pythagorean Theorem	III. Proportional Relationships and Functions	IV. Exponents and Scientific Notation			
Activity 1	Equations with the Distributive Property	The Pythagorean Theorem	Representing Proportional Relationships	Integer Exponents			
Activity 2	Solving Systems of Linear Equations by Graphing	Converse of the Pythagorean Theorem	Interpreting the Unit Rate as Slope	Scientific Notation with Positive Powers of 10			
Activity 3	Solving Systems by Substitution	Distance Between Two Points	Writing Linear Equations from a Table	Scientific Notation with Negative Powers of 10			
Activity 4	Solving Systems by Elimination	Distance Between Two Points 2	Identifying and Representing Functions	Operations with Scientific Notation			

The following content is included in this packet:

Equations with the Distributive Property Section I Activity 1

When solving an equation, it is important to simplify on both sides of the equal sign before you try to isolate the variable.

3(x+4)+2 = x+10	Since you cannot combine <i>x</i> and 4, multiply both by 3 using the Distributive Property.
3x + 12 + 2 = x + 10	Then combine like terms.
3x + 14 = x + 10 - 14 - 14	Subtract 14 to begin to isolate the variable term.
3x = x - 4 $-x - x$	Subtract <i>x</i> to get the variables to one side of the equation.
$\frac{2x}{2} = \frac{-4}{2}$	Divide by 2 to isolate the variable.
x = -2	The solution is -2 .

Solve.

1. 5(i+2) - 9 = -17 - i2. -3(n+2) = n - 22

You may need to distribute on both sides of the equal sign before simplifying.

$3(3m - 2) = \frac{3}{4}(4 - 24m)$ 9m - 6 = 3 - 18m	Use the Distributive Property on both sides of the equation to remove the parentheses.
+6 +6	Add 6 to begin to isolate the variable term.
9 <i>m</i> = 9 – 18 <i>m</i> + 18 <i>m</i> + 18 <i>m</i>	Add 18 <i>m</i> to get the variables to one side of the equation.
$\frac{27m}{27} = \frac{9}{27}$	Divide by 27 to isolate the variable.
$m=\frac{1}{3}$	The solution is $\frac{1}{3}$.

Solve.

3.
$$9(y-4) = -10\left(y+2\frac{1}{3}\right)$$

4. $-7\left(-6-\frac{6}{7}x\right) = 12\left(x-3\frac{1}{2}\right)$

Solving Systems of Linear Equations by Graphing Section I Activity 2

When solving a system of linear equations by graphing, first write each equation in slope-intercept form. Do this by solving each equation for y.

Solve the following system of equations by graphing.

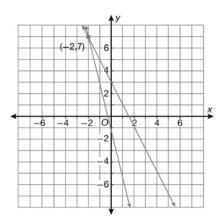
v = -2x + 3y + 4x = -1

The first equation is already solved for y.

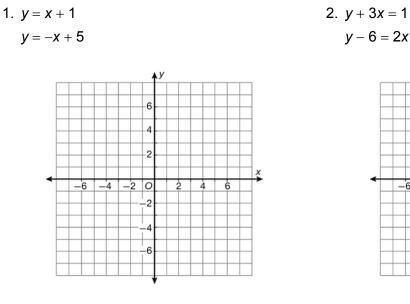
Write the second equation in slope-intercept form. Solve for y.

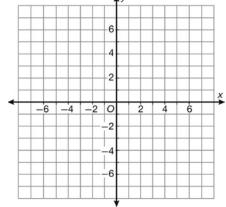
y + 4x - 4x = -1 - 4x

y = -4x - 1

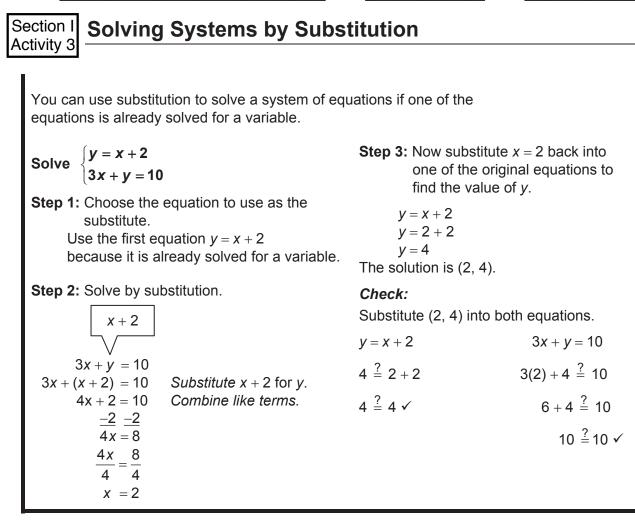

Graph both equations on the coordinate plane.

The lines intersect at (-2, 7). This is the solution to the system of linear equations.


To check the answer, substitute -2 for x and 7 for y in the original equations.


y = -2x + 3; 7 = -2(-2) + 3; 7 = 4 + 3; 7 = 7

y + 4x = -1; 7 + 4(-2) = -1; 7 - 8 = -1; -1 = -1



Solve each linear system by graphing. Check your answer.

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.

Solve each system by substitution. Check your answer.

1. {	$\int x = y - 1$		y = x + 2
	$\begin{cases} x = y - 1 \\ x + 2y = 8 \end{cases}$	۷.	y = x + 2 $y = 2x - 5$

3. {	$\begin{cases} y = x + 5\\ 3x + y = -11 \end{cases}$		$\begin{cases} x = y + 10 \\ x = 2y + 3 \end{cases}$
	3x + y = -11	ч.	x = 2y + 3

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.

Solving Systems by Elimination Section I Activity 4

Solving a system of two equations in two unknowns by elimination can be done by adding or subtracting one equation from the other.

Elimination by Adding

Solve the system: x + 4y = 83x - 4y = 8

Solution

Notice that the terms "+4y" and "-4y" are opposites. This means that the two equations can be added without changing the signs.

$$x + 4y = 8$$

$$3x - 4y = 8$$

$$4x + 0 = 16$$

$$4x = 16, \text{ or } x = 4$$

Substitute x = 4 in either of the equations to find y: $x + 4y = 8 \longrightarrow 4 + 4y = 8$ 4y = 4, or v = 1

The solution of this system is (4, 1).

Elimination by Subtracting

Solve the system: 2x - 5y = 152x + 3y = -9

Solution

Notice that the terms "2x" are common to both equations. However, to eliminate them, it is necessary to *subtract* one equation from the other. This means that the signs of one equation will change. Here, the top equation stays the same. The signs of the bottom equation change.

$$2x - 5y = 15$$

(-)2x (-)3y = (+)9
0 - 8y = 24, or y = -3

Substitute y = -3 in either of the original equations to find x: $2x - 5y = 15 \longrightarrow 2x - 5(-3) = 15$ 2x + 15 = 15. or *x* = 0

The solution of this system is (0, -3).

Solve the following systems by elimination. State whether addition or subtraction is used to eliminate one of the variables.

3x + 2y = 101. 3x - 2y = 14

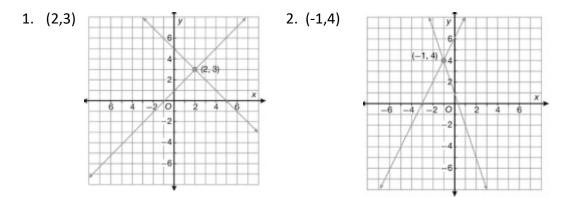
Operation:

$\begin{array}{l} 2. \\ \begin{cases} x+y=12\\ 2x+y=6 \end{cases} \end{array}$

Operation:

Solution: (_____, ____)

Solution: (_____, ____)


Answer Key

I. Solving Equations and Systems of Equations

Activity 1: Equations with the Distributive Property

1. i = -32. n = 43. y = 2/34. x = 14

Activity 2: Solving Systems of Linear Equations by Graphing

Activity 3: Solving Sy stems by Substitution

- 1. (2, 3) 2. (7, 9)
- 2.(7,9)
- 3. (-4, 1) 4. (17, 7)

4. (17,7)

Activity 4: Solving Systems by Elimination

1. Addition; (4, -1) 2. Subtraction; (-6, 18)