Why does \(\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd} \)

Explaining the Math Behind the *Butterfly Method*

<table>
<thead>
<tr>
<th>STEPS</th>
<th>REASONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{a}{b} + \frac{c}{d})</td>
<td>Given</td>
</tr>
</tbody>
</table>
| \(\frac{a}{b} \left(\frac{d}{d} \right) + \frac{c}{d} \left(\frac{b}{b} \right) \) | Create common denominators with the product \((bd)\).
Note: The product \((bd)\) will produce a *common* denominator, but it will not always produce the *least* common denominator (LCD)...and that's okay! |
| \(\frac{ad}{bd} + \frac{cb}{db} \) | Simplify
Note: Multiplying a numerator and denominator by the same nonzero whole number (e.g. \(\frac{a}{d} \) or \(\frac{b}{b} \)) creates an equivalent fraction. |
| \(\frac{ad}{bd} + \frac{bc}{bd} \) | Rewrite the numerator and denominator of the second fraction using the Commutative Property of Multiplication. |
| \(\frac{ad + bc}{bd} \) | Simplify by adding the numerators of the two fractions with common denominators. |

Conclusion: Teach the math as an extension of equivalent fractions and adding/subtracting fractions with common denominators. Let the *students discover* the butterfly.